Finite element analysis of the resurfaced femoral head.
نویسنده
چکیده
Failure of the resurfaced femoral head may occur in the short term owing to femoral neck fracture or in the long term owing to aseptic loosening as a result of strain shielding. Resurfacing arthroplasties are not all the same. In particular, there is considerable debate regarding the role of the metaphyseal stem and cementing technique. This study examines the influence of various metaphyseal stem configurations (diameter, percentage length in contact with bone, and bonded versus debonded) and cement mantle thickness on the load transfer within the femoral head. Resurfacing resulted in significant strain shielding in the superior femoral head and elevated strain in the superior femoral neck. Although the increase in strain in the femoral neck was significant, the mean strains were below the yield strain for cancellous bone. Peak strains were observed above the yield strain, but they accounted for less than 1 per cent of the total head-neck bone volume and therefore were unlikely to result in femoral neck fracture. Increasing the stem diameter and increasing the percentage stem length in contact with bone both increased the degree of strain shielding. Bonding the metaphyseal stem produced the most dramatic strain shielding, which also extended into the head-neck junction. In contrast, varying the cement mantle thickness had a negligible effect on the load transfer.
منابع مشابه
Prosthesis design and stress profile after hip resurfacing: a finite element analysis.
PURPOSE To evaluate the effect of prosthesis design on stress profile in the proximal femur after hip resurfacing. METHODS The von Mises stress profile of the native femur was simulated and compared with that of resurfaced femurs using various prosthetic materials (titanium, cobalt-chrome, ceramic), stem lengths (normal, half, short, and no stem), and femoral head coverage (shell size) [260 d...
متن کاملDesign Optimization of Hip Resurfacing Prosthesis Using Finite Element Analysis
Hip resurfacing is an alternative to total hip arthroplasty for the young and active patient likely to outlive traditional means of hip joint replacement. To optimize design on the hip resurfacing prosthetic stress profile in the proximal femur after hip resurfacing. The acetabular cup is implanted in much the same fashion as an uncemented total hip arthroplasty, however, implantation of the fe...
متن کاملThe axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.
This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...
متن کاملFinite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions
Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...
متن کاملEffects of positioning and notching of resurfaced femurs on femoral neck strength: a biomechanical test.
PURPOSE To assess the effects of positioning and notching of resurfaced femurs on the mechanical strength of third-generation saw bone (TGSB) femurs using an in vitro analogue bone model. METHODS 30 TGSB femurs were equally divided into 6 resurfaced femur groups (intact, anatomic, varus, valgus, anatomically notched, and valgus notched) for testing the load to failure, stiffness, and total en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
دوره 220 2 شماره
صفحات -
تاریخ انتشار 2006